Measurement of the Single Top Quark t-Channel Cross section in pp Collisions at sqrt(s) = 7 TeV with the CMS Experiment

CMS PAS TOP-10-008

- Introduction and Event Selection
- 2D Analysis
- Boosted Decision Tree (BDT) Analysis
- Combination and Results

Dennis Klingebiel klingebiel@physik.rwth-aachen.de **RWTH Aachen, Physics Institute IIIA**

on Behalf of the CMS Collaboration

Introduction

Cross sections @ NLO

g w t g \overline{b}

t-channel

LHC

7 TeV: 4.6 pb

pb **64.3 pb**

10.6 pb

Tevatron

1.96 TeV: 0.9 pb

2 pb

0.09 pb

- 2010 Dataset (36pb⁻¹):
 - First measurement of t-channel single top quark production
 - → Other channels are treated as background
 - Direct measurement of V_{tb}
 - → Probe EW interactions of the top quark in a new energy regime

Event Selection

- Trigger: Single μ/e
- Existence of a good primary vertex
- Exactly one muon (electron) with
 - $p_T > 20 \text{ GeV } (E_T > 30 \text{ GeV}), |\eta| < 2.1 (2.5)$
 - relative isolation < 0.1 $relIso = \frac{chargedHadronIso + neutralHadronIso + photonHadronIso}{p_T}$
 - 2D impact parameter to primary vertex < 0.004cm (0.02 cm)
 - Dilepton veto, Z veto (el. channel only)
- Exactly two anti-kt 5 Particle Flow jets with
 - $E_{T} > 30 \text{ GeV}, |\eta| < 5$
 - one (tight) b-tagged jet (track counting algorithm)
 - $\Delta \phi$ (jet1, jet2) < 3 (BDT analysis)
 - Loose b-veto on 2nd jet (track counting algorithm) (2D analysis)
- Transverse W boson mass > 40 GeV (50 GeV)

Event Selection & Single Top Quark Reconstruction

- Solve neutrino z-momentum
- W boson mass constraint
 - real solutions: smaller |p_z|
 - complex solution: minimally modify MEx and MEy

Still rather small signal to background ratio: Complementary methods

- → Exploit two characteristic features of Single top quark production (**2D analysis**)
- → Use MVA technique Boosted Decision Trees for further separation (**BDT analysis**)

Strategy: Two Complementary Methods

2D analysis

- 2D fit to angular properties of the signal
- Main backgrounds have very similar shapes
 - → Result is robust against background composition

- Multivariate analysis
- Exploits prior knowledge of EW top quark production
 - → Probes events on SM Single top quark event topology
- Maximum sensitivity

2D Analysis

almost 100% left-handed polarization of top-quark

2D Analysis

- W+light jets shape from data control region for both variables
- Cross section measurement: Perform binned likelihood fit on both variables simultaneously
- Significance: Dice pseudo-experiments
- \rightarrow Expected significance: 2.1 σ (36pb⁻¹)

(selection criteria for

illustration purposes only)

using Boosted Decision Trees (BDT)

- The Method: BDTs in a nutshell -

leafs denoted as "signal" or "background" like

- Signal events: +1
- Background events: -1

weighted majority vote

$$y_{Boost}(\vec{x}) = 1/N_{trees} \cdot \sum_{i}^{N_{trees}} ln(\alpha_i) \cdot h_i(\vec{x})$$

BDT Analysis

- 37 well-modelled input variables in 5 categories:
 - Kinematics of final-state objects
 - Correlations of final-state objects
 - Properties of reconstructed W, t, t+q
 - Angular distributions of I,j wrt W,t,t+q
 - Global event properties
- Performed Kolmogorov-Smirnov-Test on W-enriched control sample for each variable: obtained good description of all input variables

Single top t-channel events separated from background

- Cross section measurement: Bayesian "core method"
- → Treatment of nuisance parameters: Marginalization
- Significance: Dice pseudo-experiments
- \rightarrow Expected significance: 2.9 σ (36pb⁻¹)

Background Estimations

QCD multijet yield (2D and BDT analyses)

- Template fit, 2 components:
 QCD and non-QCD, both unconstrained
- "non-QCD" template from MC
- "QCD" template from an orthogonal sample with anti-isolation (reliso>0.2)

BDT analysis:

$$N_{OCD} = 4.92 \pm 2.46 \text{ (muons)}$$

$$N_{QCD} = 5.27 \pm 5.27$$
 (electrons)

QCD multijet shape (BDT analysis)

• "QCD" template from an orthogonal sample with anti-isolation (reliso>0.2&reliso<0.5) without b-tagging requirement

W+light partons yield (2D analysis)

- Template fit in data control regions: 30% (20%) uncertainty in muon (electron) channel
 - without b-tagging requirement
 - with b-tagging requirement loose <= b-tag < tight

W+light jets shape (2D analysis)

• from data control region without b-tagging requirement

Systematic Uncertainties

		impact on		
uncertainty	correlation	2D	BDT	
		- +	- +	
statistical only	60	52	39	
shared shape/rate uncertainties:				
ISR/FSR for tf	100	-1.0 + 1.5	< 0.2 < 0.2	
Q^2 for $t\bar{t}$	100	+3.5 -3.5	+0.3 -0.4	
Q^2 for V +jets	100	+5.7 -12.0	+2.6 -4.5	
Jet energy scale	100	-8.8 +3.6	-5.1 $+1.2$	
b tagging efficiency	100	-19.6 + 19.8	-15.2 +14.6	
MET (uncl. energy)	100	-5.7 +3.7	-3.9 -0.5	
shared rate-only uncertainties:				
$t\overline{t}$ (±14%)	100	+2.0 -1.9	+0.5 -0.6	
single top s ($\pm 30\%$)	100	-0.4 +0.5	-0.4 +0.4	
single top tW (±30%)	100	+1.1 -1.0	< 0.2 < 0.2	
<i>Wbb</i> , <i>Wcc</i> (±50%)	100	-3.0 + 2.9	+1.7 -1.9	
Wc (+100%)	100	-3.0 +6.1	-2.4 +4.4	
Z+jets (±30%)	100	-0.6 +0.7	+0.4 -0.2	
electron QCD (BDT: ±100%, 2D: +130%)	50	+2.9 -3.7	-1.7 +1.7	
muon QCD (BDT: ±50%, 2D: ±50%)	50	< 0.2 < 0.2	-2.1 +2.1	
signal model	100	-5.0 $+5.0$	-4.0 $+4.0$	
BDT-only uncertainties:				
electron efficiency (±5%)	0	__	-1.4 $+1.4$	
muon efficiency (±5%)	0 \	- \ (-	-3.6 +3.5	
V+jets (±50%)	0 \	- / +	-1.5 < 0.2	
2D-only uncertainties:		///		
muon W+light (±30%)	0	-1.4 + 1.4		
electron W+light (±20%)	0	-0.6 +0.7		
W+light model uncertainties	0 \	-5.4 +5.4	I	

Combination and Results

CMS Preliminary, \sqrt{s} =7 TeV, L=35.9 pb¹

Expected significance	Observed significance
1.7	2.5
1.3	3.1
2.4	3.1
2.0	1.9
2.1	3.7
2.9	3.5

Combination and Results

CMS Preliminary,√s=7 TeV, L=35.9 pb¹

Expected significance	Observed significance	
1.7	2.5	
1.3	3.1	
2.4	3.1	
2.0	1.9	
2.1	3.7	
2.9	3.5	

$$|V_{tb}| = \sqrt{\frac{\sigma^{exp}}{\sigma^{th}}} = 1.16 \pm 0.22 (exp) \pm 0.02 (th)$$

For $0 \leq |V_{tb}|^2 \leq 1$ (flat prior in $|V_{tb}|^2$):

 $|V_{tb}| > 0.69$ @95% CL (BDT analysis)

Conclusion

$$\sigma = 83.6 \pm 29.8(stat. + syst.) \pm 3.3(lumi.)$$
 pb

Observed significance: 3.5σ (BDT) and 3.7σ (2D)

- First measurement of single top quark t-channel production at 7 TeV
 - First measurement of single top quark t-channel without MVA
 - Consistent with Standard Model
 - 36% precision with 2010 data

Backup

BDT Analysis

Comparison of BDT output in Monte Carlo simulation:

t-Channel: SINGLETOP, MADGRAPH, MC@NLO Top quark pair: MADGRAPH, MC@NLO, Pythia

→ Negligible shape differences

BDT output in data:

Shape comparison of BDT output in W+Jets enriched control region "MC out of the box"

BDT Analysis

BDT output in after full selection

"MC out of the box" and (individual processes not scaled to most probable values after statistical evaluation)

Events

The top 5 discriminating variables

The top 5 discriminating variables

Events

The top 5 discriminating variables

140 160 p_T (GeV)

2D fit

Figure 11: Projections of the 2D fit to $\cos \theta_{lj}^*$ (left) and η_{lj} (right) in the muon decay channel.

Figure 12: Projections of the 2D fit to $\cos \theta_{lj}^*$ (left) and η_{lj} (right) in the electron decay channel.

Golden muon candidate

Most signal-like according to the BDT; it also passes the 2D selection $\cos\theta_{_{li}}{}^*=0.24$, $\eta_{_{li}}=-3.76$

Golden electron candidate

Most signal-like according to the BDT; it also passes the 2D selection $\cos\theta_{_{||}}*=0.23,~\eta_{_{||}}=-2.84$

